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Methods from genetics and genomics can be employed to help save endangered species. One potential use is 
to provide a rational strategy for selecting a population of founders for a captive breeding program. The hope is 
to capture most of the available genetic diversity that remains in the wild population, to provide a safe haven 
where representatives of the species can be bred, and eventually to release the progeny back into the wild. 
However, the founders are often selected based on a random-sampling strategy whose validity is based on 
unrealistic assumptions. Here we outline an approach that starts by using cutting-edge genome sequencing and 
genotyping technologies to objectively assess the available genetic diversity. We show how combinatorial 
optimization methods can be applied to these data to guide the selection of the founder population. In particular, 
we develop a mixed-integer linear programming technique that identifies a set of animals whose genetic profile 
is as close as possible to specified abundances of alleles (i.e., genetic variants), subject to constraints on the 
number of founders and their genders and ages. 

 
1.   Introduction 

It is generally agreed that techniques from genetics and genomics can be useful for understanding, and 
ideally sometimes preventing, the process of extinction1,2,3. One facet of species-conservation efforts, when 
appropriate, is to breed animals of an endangered species in captivity, e.g., in zoos and wildlife parks, with 
the goal of releasing them back into the wild at some time in the future. In some cases, the number of 
animals has dropped so low that all members of a species have been captured, as was done in North 
America for the California condor, red wolf and black-footed ferret. A better approach may be to identify 
species whose numbers are declining sharply but where more animals exist than can be supported in 
captivity, and to select from among the wild animals a representative subset to serve as the founder 
population for the captive breeding program. 

In such cases, there is broad agreement among wildlife management officials that a goal should be for 
the founder population to capture at least, say, 95% of the genetic diversity of the wild population.  
However, there is disagreement over precisely what this means and how to achieve it. Perhaps the most 
common reasoning goes as follows4. Suppose a genomic position has two alleles in the population, with 
frequencies p and 1–p. A founder population consisting of a random sample of n animals has 2n instances 
of that position, and the probability that all of them contain the first allele is p2n. Thus, the probability that 
the n animals have at least one copy of each allele (rather than 2n copies of the same allele) is: 

 
1 – p2n – (1–p)2n. 
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If we want to obtain, with 95% certainty, both alleles at each random locus that occurs with a frequency of 
at least 0.05 in the wild population, then 30 founders are adequate, as is shown by evaluating the formula 
with p = 0.05 and n = 30. To have a 95% chance of capturing an allele with a frequency of only 1% 
requires 150 founders; 30 founders will probably not contain it. 

The deficiency in this reasoning is that alleles don’t occur at random in a wild population. Instead, a 
given allele is likely to occur more frequently in one sub-population than another, e.g., because of 
geographical barriers to gene flow. Thus, for example, picking all of the founders from one sub-population 
can easily miss alleles that are common overall. In practice, without an accurate survey of the genetic 
profile of the species, the number, degree of differentiation, and geographical locations of the relevant sub-
populations may not be known. 

Modern methods for sequencing and genotyping make it possible to directly assess the genetic 
diversity of a species and identify its population structure; sequencing a small sample of geographically 
distinct individuals can identify a number of the available genetic variants, and genotyping methods can 
then efficiently determine the genetic make-up of a large number of individuals population-wide. This 
paper describes how the resulting data can be used to select an optimal subset of the genotyped individuals 
that best matches specified allele frequencies, while satisfying additional constraints such as the total 
number of individuals selected, the number of males, and a suitable distribution of ages. Also, we show that 
allowing a bit of flexibility in the choice of founders can simplify the computation. In another formulation, 
we know the average genetic characteristics in sub-populations of the species, but not the genotypes of the 
individual candidates for the founder population. 

One way to select the target genetic profile for the founder population is to match what is observed in 
living animals. In that case, random sampling would be justified if there is no population-genetic structure 
to the sampled population. Using the genotyping data required by our approach, one could run a program 
like STRUCTURE5 to see if such structure exists. 

The goal of recapitulating the distribution of alleles found in the overall population is by no means the 
only approach. We believe that in some cases a preferable goal may be to restore the balance that existed 
before the species was affected by the onslaught of industrial pollution, pesticides, disease, etc. in the last 
century or two. (We assume here that the pollution has been cleaned up, since we wouldn’t want to undo 
any progress the species has made in dealing with it.) To support this approach, we are developing 
improved methods for sequencing the DNA from museum specimens6,7, which can be used to determine 
past allele frequencies and population structure, and thereby identify a more natural target allele 
distribution for a founder population. 

Another option for the target profile is where all alleles have frequency 0.5. For each locus, this 
minimizes the probability that an allele will be lost due to random genetic drift in the captive population. 
(This observation can be rigorously proved by martingale theory.) Moreover, this choice maximizes the 
genetic diversity in the captive population, since the probability that two randomly selected copies of a 
locus with minor allele frequency p are different is 2p(1–p), which is maximized when p = 0.5. 

 
2.  Methods 
2.1.  The Data 
In our approach, several individuals of the species (perhaps even just a single individual) are sequenced 
using next-generation sequencing technology, until an adequate number of genomic differences has been 
identified. This step is not as easy as it sounds, because we assume that at the start of this process we know 
nothing about the genomic characteristics of the target species. In contrast, next-generation sequencing 
instruments and the available software for analyzing the data they produce are primarily designed for re-
sequencing, i.e., where the goal is to look for small differences from an available “reference” genome 
sequence. Often, and also in our case, the main quest is for single-nucleotide polymorphisms, abbreviated 
SNPs. (Experts might cringe at this use of “SNP”, instead requiring that a nucleotide difference be 
observed at a certain frequency, say ≥ 1%, before deserving the title of a polymorphism.) We call this 
initial stage for our approach “identifying SNPs without a reference”. In more detail, the problem is to start 
with a specification for the desired number of SNPs, and automatically process short fragments of 
unannotated sequence data, identifying putative SNPs until enough have been found. We have developed 
software to solve this problem, but that is not the focus of this report. The outcome of this stage is a list of 
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genomic positions, each identified by, say, the 50 nucleotides on each side, where we predict that two 
distinct alleles are present in the population. 

Once enough SNPs have been predicted, we design a custom genotyping array — a fabricated device 
that uses hybridization of DNA samples to the sequences flanking the putative sequence difference to 
determine which variant of each SNP is possessed by each assayed individual. For now, let us assume that 
each animal has two copies (maternal and paternal) of that genomic position; they can be the same (in 
which case we say the individual is homozygous for the SNP) or different (heterozygous). For each SNP, 
arbitrarily pick one of the two variants as the “reference allele”, and suppose there are L variant nucleotide 
positions and that K individuals have been genotyped. The outcome of the genotyping step is an array, A, 
with L rows and K columns, whose value Aij at the intersection of row i and column j is the number of 
copies (0-2) of the ith SNP’s reference allele that was observed in the jth individual. (Be warned that in other 
contexts it may be common for the roles of rows and columns to be reversed.) 

There are many ways to formulate the problem of using genotyping data to select an optimal founder 
population for a captive-breeding program. We next describe a few of the possibilities. 

 
2.2.  Formulation 1: Approximating Specified Allele Frequencies using Mixed-Integer-Programming 
Tools 

Suppose that from a pool of K genotyped individuals we want to select N (a specified size of the founder 
population) whose combined allele frequencies are as close as possible to a given ideal, e.g., the species’ 
allele frequencies in the year 1900 as estimated from museum specimens. Let L denote the number of SNP 
positions, which we assume are biallelic (two variants), and for each SNP pick one allele arbitrarily for 
reference. Denote the target frequency of the reference allele for SNP i (where 1 ≤  i  ≤  L) by fi with 0 ≤ fi ≤ 
1. Thus, in the founder population of N animals, there ideally will be bi = 2Nfi occurrences of that allele. 
Selecting a founder population is then equivalent to determining N binary variables xj∈{0,1} for 1 ≤  j  ≤  
K, where xj = 1 if the jth animal is in the founder population and xj = 0 otherwise. The requirement that there 
be N founders can be stated as ∑xj = N. The number of occurrences of reference allele i in the founder 
population is ∑{Ai,jxj : 1 ≤  j  ≤  K}, which we want to be very close to the chosen target value bi.  

We will typically want to place additional constraints on the set of selected individuals. For instance, 
suppose we want to select exactly 50 individuals, of which 20 are males, and 10 are two years old. We form 
a 3-by-K array, C, where first row is all 1s, the second row has a 1 in column j if the jth genotyped 
individual is a male (0 for a female), and the third row has a 1 in positions corresponding to 2-year-olds (0 
otherwise). Our constraints then have the form Cx = d, where d = (50, 20, 10)T. 

Thus, our focus is on the following general formulation: We are given the L × K matrix A of allele 
frequencies Ai,j, the vector b =(b1,b2,…,bL)T that indicates the desired total abundance of each reference 
allele in the founder population, and the M × K matrix C and vector d =(d1,d2,…,dM)T that represent other 
constraints on the population (such as total population size, number of individuals of each age, number of 
each sex, and so on). We want to determine a vector x = (x1,…,xK)T of binary variables that indicate 
whether individual j (j=1,2,…,K) is included in the selected population, such that the desired allele 
abundances are matched as closely as possible subject to the specified constraints.  Our problem 
formulation is thus 
 

Minimizex ρ(Ax–b) subject to Cx ≤ d,   x∈{0,1}K, 
 
where ρ(.) denotes a loss function that measures goodness of fit between two vectors of length L. (Although 
the constraints are written as inequalities, our discussion generalizes immediately to the case in which some 
or all are equality constraints.) The most useful goodness-of-fit measures ρ are the sum-of-squares 
function, the l1 (sum-of-absolute-values) loss function, or the l∞ (maximum residual) loss function, leading 
to the following three specific formulations: 
 

Minimizex (1/2L)Σi
 (Ai. x–bi)2 subject to Cx ≤ d,   x∈{0,1}K, 

 
(where Ai. denotes the ith row of A);  
 

Minimizex Σi=1,2,…,L
  |Ai. x-bi|/L  subject to Cx ≤ d,   x∈{0,1}K 
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and: 
 

Minimizex  maxi=1,2,…L |Ai. x-bi| subject to Cx ≤ d,   x∈{0,1}K 
 

 The objective in the least-squares formulation can be rewritten as  (1/2) xTQx + cTx where Q = 
(1/L)ATA and c = –(1/L)ATb, leading to a binary quadratic program. The l1 and l∞ formulations can be 
formulated as mixed-integer linear programs (MIP) by using some standard reformulation techniques. For 
the l1 formulation, we introduce variables ri and si to denote the positive and negative parts of Ai. x – bi, 
respectively, and defining r =(r1,r2,…,rL) and s =(s1,s2,…,sL), we obtain the following reformulation: 

 
 

Minimizex,r,s 1T(r +s)  subject to  r – s =Ax – b,  Cx ≤ d,  r ≥ 0,  s ≥ 0,  x∈{0,1}K, 
 
where 1 denotes the vector of length L whose elements are all 1. In fact, this is a binary MIP, since the 
solution contains a combination of continuous variables (r and s) and binary variables (x). For the l∞ 

formulation, we obtain: 
  

Minimizex,η η  subject to –η1 ≤ Ax – b≤η1,  Cx ≤ d,  x∈{0,1}K, 
 
where η is a scalar that captures the largest magnitude among elements in the vector Ax – b.  

Commercial packages for solving MIP include CPLEX (www.ilog.com) and Xpress 
(www.dashoptimization.com), while CBC in the COIN-OR collection (https://projects.coin-or.org/Cbc) is a 
good open-source alternative. Many packages (including CPLEX and Xpress) now include support for 
integer quadratic programs as well as linear MIPs. Modeling languages are also available that interface to 
these solvers and allow users to specify their problem in an intuitive fashion. These include AMPL 
(www.ampl.com) and GAMS (www.gams.com). However, the problems in this paper have a simple 
enough form that modeling languages are not necessary unless one wishes to use the NEOS Solver, a web 
server for solving optimization problems at no cost (see www-neos.mcs.anl.gov).  

MIPs are known to be extremely difficult to solve in general (they are NP-hard). However, for many 
practical problems, good solutions can be obtained in a reasonable amount of computing time. The 
algorithms underlying MIP codes are based on branch-and-bound strategies, cutting planes, and various 
other heuristics. When applied to the binary MIP above, branch-and-bound strategies construct a tree of 
relaxed problems, where in each node of the tree some of the binary variables xj are fixed at 0 or 1 while the 
others are allowed to take on any value in the range [0,1]. This “relaxation” is a (continuous) linear 
program whose optimal value yields a lower bound on the optimal value of the original MIP. At each node 
of the tree, we form two child nodes by choosing one of the relaxed variables xj and fixing it to 0 and 1, 
respectively. Note that the lower bound achieved at each child node must be at least as great as the lower 
bound at the current node. (At the root node of the tree, we relax all the variables and impose only the 
bounds xj∈[0,1], j=1,2,…,K, along with the constraints Cx ≤ d.) The full tree would have 2K nodes in total, 
but the hope is that we can avoid examining the vast majority of the tree by cutting off branches on which 
the lower bound is already greater than the value obtained at the “incumbent” – the feasible point with the 
best known objective value obtained to date.  

Cutting planes are additional linear constraints added to the relaxed problem whose function is to 
exclude fractional solutions – those in which some components xj are not either 0 or 1. Cuts can also be 
applied at lower nodes in the branch-and-bound tree. MIP software typically contains many heuristics for 
deciding on branching strategy (i.e. choosing the relaxed variable xj on which to branch at each node), 
deciding what kinds of cutting planes to find and how often to look for them, and looking for candidate 
feasible solutions to use as incumbents. By setting options at input, users can control all these aspects of the 
codes. 

The problems arising in this application have a property that makes them quite difficult to solve with 
standard MIP strategies. Because of the nature of the problem data, relaxation of the binary variables leads 
to a relaxed solution that has most of its components in the interior of the interval [0,1]. (This is true at 
most of the nodes of the branch-and-bound tree as well as at the root node.) Hence, the relaxed solutions 
are far from being feasible points for the original problem, and they produce only a weak lower bound on 
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the true objective. The upshot is that the branch-and-bound strategy is not able to exclude large parts of the 
tree from the search, and many nodes must be visited (and the relaxed problem at those nodes solved) 
before the lower bound increases to the point where a candidate solution can be declared to be nearly 
optimal. (This effect has also been observed in related contexts by D. Bienstock, in a personal 
communication.) It is likely that the heuristics for finding good candidate solutions in these codes do in fact 
generate near-optimal solutions after a fairly short time; the difficulty comes in verifying that indeed it is 
close to the best attainable. Generation of better lower bounds remains an open research question in 
computational mixed-integer linear programming. 

When we use the mixed-integer quadratic programming formulation arising from the sum-of-squares 
loss function (see below), the same issue arises. However, in this case, in an unpublished manuscript dated 
2009, D. Bienstock proposes to use lower bounds on the curvature of the quadratic objective to improve the 
quality of the lower bounds obtained at the nodes of the branch-and-bound tree. In our case, the matrix A 
(and Q = ATA) typically is well conditioned, so the bounds obtained by these means may be significantly 
stronger than the standard lower bound. We note that software frameworks for mixed-integer quadratic and 
nonlinear programs are much less prevalent than for linear MIPs, and this fact together with the large 
values of K and L for some data sets makes the logistics of developing a code for solving this problem quite 
daunting. 
 
2.3.  Formulation 3: A Pure Integer-Programming Variation 

 
We have also explored simpler optimization problems related to selecting a set of individuals that satisfy 
requirements on their genotypes and other constraints. The hope is that the problem can be solved more 
efficiently than the problems discussed in the previous section, and that at least in some instances the 
solution will be adequate for the needs at hand. 

For instance, formulating the computation as a linear programming problem whose only unknowns are 
the K binary variables xj widens the domain of solvers that can be applied. One approach is as follows. Let 
A, b, C and d be as in Formulation 1. There, A and b have L rows and contribute to the objective function, 
while C and d have M rows and constitute the constraints. Let us assume that the constraints require that 
either Ck. x = dk or Ck. x ≥ dk for 1 ≤ k ≤ M (where Ck. denotes the kth row of C). Form the (2L+M–1) × K 
array A2 and vector b2 as follows. For every row of A, corresponding to the reference allele for a particular 
SNP, A2 contains that row plus a row for the other allele of that SNP. Thus the sum of the two rows has a 2 
in every position. The corresponding two entries in b2 are the SNP’s entry in b (giving the target abundance 
for the reference allele) and 2N minus that value. The other rows of A2 and b2 are taken from C and d, 
omitting the constraint that the founder-population size is N. The pure integer-programming approximation 
to Formulation 1 is:  

 
Minimize ∑xj subject to A2x  ≥ b2,   x∈{0,1}K 

 
This reformulation makes the following changes. First, the size of the founder population is now 

variable. For instance, if each of 5 age groups is required to have 10 representatives among the founders, it 
might require 55 founders to also satisfy the other constraints. Also, where we formerly required the 
abundance of the reference allele for the ith SNP to approximate bi (and by inference the abundance of the 
SNP’s other allele to approximate 2N–bi), we now require the two alleles’ abundances to equal or exceed 
those values. Finally, equality constraints in Formulation 1 are relaxed to inequalities. For instance, an 
original requirement of exactly 20 males now requires at least 20 males. Compared to the l1 version of 
Formulation 1, this gives a problem with many fewer unknowns (but the same number of binary 
unknowns), though there are far more constraints. In this respect it is similar to the l∞ version of 
Formulation 1. 

An advantage of looking at the problem this way is that several approaches for cutting corners are 
suggested. First, it may be possible in practice to simply discard most of the constraints. For instance, if the 
only concern is to retain rare alleles, then constraints where the required allele frequency exceeds an 
appropriate lower bound could be removed. Another strategy is to replace the function being optimized (the 
number of founders) by a constraint that the founder population be “small enough”. For instance, if we 
want to require that there be at least 10 individuals in each of five age groups (requiring 50 founders), we 
can add the constraint ∑xj ≤ 55. Strategies like these can substantially expand the range of problem that are 
readily solved, as illustrated in Section 3.3, below. 
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2.4.  Formulation 4: Selecting Animals That Aren’t Genotyped 

Another variant is to again fix the number of animals to be chosen, say N, and optimally select from 
the already genotyped pool and/or ungenotyped wild individuals. For ungenotyped animals, we assume that 
the genetic profiles of animals from different populations or geographic regions are already characterized 
from the genotyping. The point is not that individuals who are not genotyped are being selected. Rather, the 
issue is that representative individuals are being sampled from populations whose general properties are 
assumed to be known, even if the specific individuals are unknown. 

Suppose we have L SNPs characterized for K populations (or geographic locations). Fix a “reference” 
allele for each SNP (say, the more-common allele), and let pi,j denote that allele’s frequency for SNP i in 
population j, where 1 ≤  i  ≤  L and 1 ≤  j ≤  K. We assume that pi,j is known. If we want to sample xj animals 
from population j, an optimal sampling strategy that yields the desired genetic diversity can be determined 
by the following criteria: 

 
• The expected abundance of the reference allele for the ith  SNP closely approximates the target value bi. 
• If population j has cj individuals, then 0 ≤ xj ≤ cj.  
• The total sample size is N. 
 

Let P = {pi,j} denote the L × K matrix of allele frequencies, pi denote the ith row of P, and b = 
(b1,b2,…,bL)T. Also let x = (x1, · · · , xK)T denote the vector of unknown animal-counts from the various sub-
populations. For SNP i, the expected count for the reference allele is 2pix. Thus, the above criteria can be 
expressed as: 
 

Minimizex ρ(Px–b) subject to 0 ≤ xj ≤ cj  and xj an integer for 1 ≤ j ≤  K and ∑xj = N. 
 
Here ρ can be any of the loss functions mentioned above. To include both selection (from genotyped 
animals) and sampling (from the wild), we can treat each genotyped animal as a “one-individual 
population”, for which pi,j equals 0 (homozygote wild type), 0.5 (heterozygote) or 1 (homozygote 
mutation), and cj = 1. In cases where the sub-population sizes cj are fairly large, the restriction to integer 
solutions might not be so onerous as the constraint to binary unknowns in Formulation 2; rounding the 
entries of a solution to the continuous-variable problem might be good enough in practice. That is, the 
problem is solved by allowing each variable xj to assume arbitrary real values between 0 and cj, and then 
the optimal value replaced by the closest integer. 
 
3. Experience 

In essence, the genotyping data considered in this paper consists of a matrix with L rows and K columns, 
where each row corresponds to a genomic position where different nucleotides have been observed within a 
species, and each column corresponds to an individual animal of that species. Each entry is 0, 1, or 2, 
depending how many copies of the (arbitrarily chosen) reference allele for that difference are present in that 
individual. (For now, we are considering autosomal nucleotide polymorphisms, but in Section 3.4 we 
sketch what needs to be changed for other kinds of genomic polymorphisms, such as microsatellites.) Small 
numbers of these so-called SNPs (single nucleotide polymorphisms) have been used for various purposes 
related to wildlife management8, but we anticipate the day, not long off, when next-generation sequencing 
and large-scale genotyping methods will be employed. In particular, our goal here is to use such data to 
select a set of animals with optimal genetic diversity that meets certain additional constraints, and we have 
described combinatorial optimization methods for several formulations. We now recount our experience to 
date with applying some of those methods to realistic (though mostly artificial) sets of data. 

 
3.1. Test Data 
 
Large genotype data sets will soon be available for endangered species, including the orangutan (personal 
communication from C. Bustamante and D. Locke). Currently, data for 384 SNPs and 322 individuals is 
available for a bird, the collard flycatcher9. Much larger data sets are available for some domesticated 
species. For instance, for cattle there is data for 37,470 SNPs and 497 individuals10. However, the most 
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extensive data sets are for humans, and we have employed these data to begin evaluating our proposed 
methods. 

We used human genotypes from a preliminary data release from the 1000 Genomes Project11,12, which 
we downloaded from ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/2009_04/. We identified over 4 
million SNPs having data from each of the population groups CEU, JPTCHB, and YRI, which yielded 
complete data for 172 individuals. To experiment with various solution techniques we created data sets by 
randomly selecting L rows and K columns from the derived array of genotypes, for various values of L and 
for K ≤ 172. In our tests, and we anticipate also in practice, L (the number of SNPs) is typically larger than 
K (the number of genotyped animals). When genders and ages of the individuals were needed, we 
randomly assigned genders and age groups 1 to 5 with equal probabilities. When a vector of target allele 
frequencies was needed, we scaled the observed frequencies in the selected genotypes to the desired size of 
the founder population. That is, for each row (SNP), we summed the numbers (0-2) in that row, multiplied 
by the size of the founder population, and divided by the number of columns (genotyped individuals). 

 
3.2. Results Obtained with Mixed Integer Programming Formulations 

For the problem of fitting a desired distribution of allele frequencies, we first wanted to see how well one 
can do using freely available software, without any attempt to tune the software’s behavior to the 
particularities of our data, and making only modest use of computational resources. To do this, we 
attempted to solve instances of the l1 version of Formulation 1 using a MIP solver called CBC run at the 
NEOS13 server (without an “Options File” to adjust CBC’s behavior). For each of several combinations of 
L and K, we requested a founder population with 20 males and 10 animals of each age (1 to 5), for a total of 
50 founders. For 200 SNPs and 100 animals, the problem was solved to optimality in just over 3 minutes. 
When the number of SNPs was raised from 200 to 300, the time needed to find an optimal solution shot up 
to almost an hour. For 500 SNPs and 100 animals, or 300 SNPs and 172 animals, the computation exceeded 
our 5000-second time limit, producing a solution that is probably reasonable, but quite possibly not 
optimality. 

We next report on results obtained with the commercial MIP solver CPLEX on the l1 and l∞ 

formulations, using a data set with 5000 SNPs and 172 individuals. Again, it was required to select 10 
individuals of each age 1 through 5, of whom 20 would be males, for a total of six constraints. The 
objective was to make the frequency of alleles in the selected population as close as possible to the 
frequency in the overall population, in the l1 or l∞ sense. The modeling language GAMS14 (www.gams.com) 
was used to define the model. (Direct use of GAMS models has the advantages that they allow variants of 
the models to be tried quickly, and that GAMS files can be submitted to the NEOS server.) 

CPLEX, like other MIP solvers, allows many options and parameters to be set to non-default values, to 
improve their efficiency. Insight into the nature of problems being solved, and some trial-and-error and 
parameter tuning, can lead to dramatic improvements in run time over default values. For these problems, 
however, we able to obtain only modest improvements over default behavior by choosing alternative values 
of these parameters. Techniques that can handle the special characteristics of these problems (noted above) 
and produce verified optimal solutions in a reasonable amount of time are not available in current MIP 
solvers and are a topic of ongoing research. We believe, however, that the code is finding close-to-optimal 
solutions in reasonable time. As noted above, the difficulty comes only in verifying that they are indeed 
near-optimal, as we need to examine a large fraction of the nodes on the search tree to increase the lower 
bound to a level close to the best feasible solution obtained so far. 
 We mention for the record that the following non-default parameter values were used in the CPLEX 
runs reported here: cliques=–1 and covers=–1 (to turn off certain kinds of cut generation), dpriind=3 (to use 
steepest-edge pricing in slack space of the simplex method used at each node), varsel=4 (to force the use of 
pseudo-reduced costs as a criterion for branching), symmetry=5 (to generate symmetry-breaking cuts 
aggressively during the early stages of the solution process), mipemphasis=4 (to emphasize the search for 
better candidate solutions rather than improvement of the lower bound). We make no claims that this 
combination gives the best performance overall, or even that it is better than the default settings on these 
problems.  CPLEX Version 11.2 was executed on both formulations for 15,000 CPU seconds (a limit 
prescribed by us) on a PC with an Intel Xeon quadcore CPU at 2.66 GHz, running Red Hat Enterprise 
Linux Server release 5.3, with 4GB of DDR2 memory at 800 MHz.  
 For the l∞ formulation, the code found a point with objective value 9.9770, with a lower bound of 
1.3901, within a few hundred seconds of CPU time. The candidate solution was found by running default 
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heuristics and adding cuts to the relaxed problem at the root node of the search tree. During the remainder 
of the 15,000 seconds of execution time, 1460 nodes of the search tree were examined and four 
progressively better candidate solutions were found. At termination, the best solution found had objective 
9.4070, while the lower bound had increased only to 1.8060. 
 For the l1 formulation, the code quickly identified a candidate solution with objective 2.2173, with a 
lower bound of .3931, again without performing any branching. During the remainder of the execution 
time, three more candidate solutions with progressively better objective values were identified, with the 
final solution having objective 2.2150, while the lower bound had increased to 0.4717. Only 201 nodes of 
the branch-and-bound search tree were evaluated. 
 We note that the solutions obtained with these two objectives were quite different. In fact, of the 50 
individuals in each solution, only 19 were selected in both. 
 We conclude by reporting results obtained with the binary quadratic programming formulation. Note 
that the only variables in this formulation are the original 172 binary variables. (By forming the Hessian 
matrix Q and linear term c explicitly, we avoid the need to introduce any additional continuous variables.) 
We found that the results were improved slightly when we performed a simple transformation of A and b, 
before forming Q and c. Since a total of 50 animals are to be selected (that is, 50 of the components of x are 
1 at the optimum, while the remainder are zero), we can subtract 1 from all elements of A, while 
subtracting 50 from each element of b. After this transformation, A contains elements –1, 0, and +1, and 
Q=(1/L)ATA can have slightly better conditioning. We use this shifting procedure for the experiment 
reported below. 

For this formulation, we wrote a C code to set up the problem and call CPLEX. Except for the 
termination criteria (which enforced a limit of 15,000 seconds on CPU time), default parameter settings for 
CPLEX’s MIQP solver were used. Within a few seconds, the code finds an incumbent (the best feasible 
point encountered to date) with objective 3.9701. A total of 22 incumbents are found during the run. The 
last of these (which is the solution reported by the code) has an objective of 3.8113. After about a minute, 
the lower bound is approximately 1.71; it increases steadily but slowly thereafter to a final value of 1.8878.  
About 13,500,000 nodes of the branch-and-bound tree are examined during the run. CPLEX’s mixed-
integer QP solver makes much less use of cuts, and thus places much more reliance on branching as a 
means of solving the problem. 

To compare the optimization methodology with a random strategy as a means for selecting a set of 
individuals that fits the target allele frequencies while satisfying the constraints, we programmed in 
MATLAB a code that generates 3414 feasible points for this test set at random. The mean of the objective 
values obtained from this process is 6.2729, with a standard deviation of 1.1798. The best objective found 
was 4.8353, which is significantly worse than the solution obtained by the optimization code after just a 
few seconds of run time. 
 
3.3. The Pure Integer-Programming Variation 
 
For a given set of genotyping data, finding a “sweet spot” for the many combinations of potential LP 
shortcuts, available solvers, and choices of solver options will require some effort. As might be expected of 
a computational problem with exponential time complexity, seemingly minor changes in the approach often 
mean the difference between a quick solution and failure of the computation to terminate in a reasonable 
time. However, we now report one simple experiment that hints at what can be achieved. 

In Section 3.2 we noted failure of a straightforward attempt to run a NEOS MIP solver on random data 
for 300 SNPs and 172 animals. To experiment with reformulations of the problem, we generated random 
data for 2000 SNPs and 172 animals and applied the following shortcuts to the approach outlined in Section 
2.3. First, we permitted up to 55 founders (while continuing to require at least 10 in each of the five age 
groups). Second, we retained constraints on the allele abundance only when the lower bound was 5 or less, 
leaving 146 of the original 4000 allele-abundance constraints. Using C-language programs that we wrote to 
convert genotyping data to MPS format, we submitted the data to the SCIP15 optimizer at the NEOS server 
(with no “Parameter file”). In around 30 seconds, SCIP found a feasible solution containing 55 founders. 
We discovered that 16 of the original alleles whose constraints had been removed had less than 5 
occurrences in the computed founder-set. All of those had at least 3 occurrences, which might be 
considered adequate under certain conditions. An alternative is to add the requirement that each of those 16 
alleles occur at least 5 times to the 146 allele-abundance constraints, and re-solve the problem. 
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We also experimented with an even simpler integer-programming formulation, using a real-world data 
set. The objective was simply to guarantee a minimum number of occurrences of each allele, using 
genotyping data from a 96-SNP array that we designed for the Tasmanian devil (Sarcophilus harrisii), a 
species that is gravely threatened by extinction from a transmissible tumor16. We used the array to genotype 
85 animals, and for the following analysis used the 69 SNPs that appeared in more than one animal. The 
problem we investigated was to select a set of animals that contains each allele at least twice, which 
corresponds to a binary linear programming problem of minimizing Σxj subject to Ax ≥ 2, x∈{0,1}K, where 
2 denotes the vector containing 2s. For our 69-by-85 array, A, linear programming selected four animals. 
Interestingly, a simple greedy algorithm17 that repeatedly picks the animal that adds the most “uncovered” 
alleles, selected six animals. With four randomly selected animals, an average of only 22.7 of the 69 alleles 
appeared at least twice. Looked at another way, random selection picked an average of 31.9 animals before 
reaching 2-fold representation of every allele. What makes the problem difficult for random sampling is 
that a few of the alleles appeared only a few times among the 85 animals. (Extensive comparisons of the 
greedy and random selection strategies for a very similar problem have been published by others18.) 

 
 
3.4. Handling Other Types of Polymorphisms 
 
Our approach has been described under the assumption that each genetic marker has two possible states, 
and that each individual has two copies. Minor adjustments are required for other cases, such as 
microsatellites with multiple states, or sex-chromosome or mitochondrial markers where an individual may 
have fewer than two copies. For instance, for a microsatellite with three observed lengths, we could devote 
three rows of the genotypes array, one for each length. For each column (individual) the values in those 
rows will each be 0, 1, or 2, and the sum of the three values will be 2 (except perhaps for microsatellites on 
a sex chromosome). This works for both the linear-programming and the quadratic-programming 
formulations. 
 
4.  Conclusion 
We have developed and evaluated several methods that can use high-throughput genotyping data to select a 
set of animals that best approximates a specified allele profile, subject to additional constraints; the selected 
animals might be used as founders for a captive breeding program or reintroduced into a former range for 
that species, for example. We anticipate that the costs of sequencing and genotyping will continue to 
plummet, making it feasible to gather genome-wide population-genetic data from hundreds of animals from 
each of many species. One can easily imagine having genotypes for many thousand SNPs in hundreds of 
individuals from an endangered species, and using that information to select founders. The number of SNPs 
required to reliably represent genome-wide variation is liable to depend heavily on the particular species 
(not to mention how one interprets “reliably represent”).  For humans it has been estimated19 that, among 
all of the 6 million common (minor-allele frequency ≥ 0.1) European SNPs in the human genome, about 
80% could be ascertained at ρ2 > 0.8 through pairwise linkage disequilibrium (LD) by genotyping 0.8 
million European common and non-redundant variants in the database dbSNP. To cover a similar 
percentage of common SNPs in African-Americans, the number increases to 1.1 million SNPs. For a highly 
bottlenecked species with more extensive LD, the required number of SNPs could be much less. 

In any case, even with the available technologies, affordable approaches are possible. For a few tens of 
thousands of dollars it is possible to sequence transcripts (cDNA) from several individuals, from which 
polymorphic amino-acid positions can be identified. If the number of those differences exceeds the desired 
array capacity, computational analysis could reduce them to the differences that show signs of being 
functionally important20. For an additional few tens of thousands of dollars, a custom genotyping array can 
be purchased and applied to genotype those differences on several hundred animals. Techniques described 
in this paper, such as the mixed-integer-programming technique, can then perform an optimal, or at least 
near-optimal, selection of founders, in the sense of capturing desired abundances of the putatively 
functional protein variants. 

Departure of the target allele distribution from the distribution in the overall population increases the 
value of using an approach like ours, compared to simple random selection. For instance, we might want to 
avoid hybridized alleles (e.g., cattle genes in American bison). More generally, the belief that the goal of 
conservation efforts is to restore ecosystems to their “natural state”, which to some writers means their state 
before any human intervention, has been widely discussed21. Several publications22,23 have used museum 
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specimens to determine earlier genetic profiles. However, this has typically been done using only tiny 
amounts of hyper-variable sequence data, such as 500 bp from the mitochondrial control region or a small 
number of microsatellites. Another scenario with differing allele profiles might be importing animals to 
bring a struggling population up to a viable size when we want to retain its unique genetic make-up and/or 
reduce the threat of outbreeding depression. 

Other decisions related to species conservation have been approached with computational methods. 
One such problem is selecting a set of species to be preserved. The problem has been formalized as 
optimally selecting a specified number of species, given a phylogenetic tree relating a more inclusive set of 
species and with branch lengths that measure inter-species differences. A natural objective is to maximize 
the sum of branch lengths in the induced subtree24. A simple greedy algorithm guarantees an optimal 
solution25, and dynamic-programming algorithms solve several generalizations26.27. 

A set of individuals within a species is less well represented by a weighted tree, and other ideas have 
been applied to selecting intervals, with “maximum diversity” a frequent goal. For instance, given a set of 
genetic markers (SNPs, microsatellites, allozymes, etc.) one could try to maximize the number of observed 
alleles represented in the selected set of individuals28. This is essentially just the infamous Minimum Set 
Cover problem29, which is NP-complete and hence solved in biodiversity practice17 and studied in 
computer science theory30 using approximation methods (including linear programming). The problem 
studied here, with the added complexity of an arbitrary target distribution and constraints on gender and 
age, is correspondingly more challenging. 

A somewhat different class of optimization problems arises for management of a captive breeding 
program, where in addition to genotypes one has access to genealogies. As with selection of founders, there 
is tension between the potential goals of maximizing diversity and maintaining allele frequencies31. 
Combinatorial optimization methods have been proposed for designing breeding programs32,33. 

 
To keep pace with plummeting costs for sequencing and genotyping, more work is needed to extend 

the computational approaches described in this paper. Cutting-edge research in optimization algorithms that 
exploits the particular characteristics of this family of optimization problems may be needed to best utilize 
cutting-edge data-producing technologies. 
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