
OPTIMIZATION METHODS FOR SELECTING FOUNDER INDIVIDUALS FOR
CAPTIVE BREEDING OR REINTRODUCTION OF ENDANGERED SPECIES

WEBB MILLER†

Center for Comparative Genomics and Bioinformatics, Penn State
University Park, PA 16802

STEPHEN J. WRIGHT

Computer Sciences Department, University of Wisconsin
Madison, WI 53706

YU ZHANG

Department of Statistics, Penn State
University Park, PA 16802

STEPHAN C. SCHUSTER

Center for Comparative Genomics and Bioinformatics, Penn State
University Park, PA 16802

VANESSA M. HAYES

Children’s Cancer Institute Australia, University of New South Wales
Randwick, NSW 2031, Australia

Methods from genetics and genomics can be employed to help save endangered species. One potential use is
to provide a rational strategy for selecting a population of founders for a captive breeding program. The hope is
to capture most of the available genetic diversity that remains in the wild population, to provide a safe haven
where representatives of the species can be bred, and eventually to release the progeny back into the wild.
However, the founders are often selected based on a random-sampling strategy whose validity is based on
unrealistic assumptions. Here we outline an approach that starts by using cutting-edge genome sequencing and
genotyping technologies to objectively assess the available genetic diversity. We show how combinatorial
optimization methods can be applied to these data to guide the selection of the founder population. In particular,
we develop a mixed-integer linear programming technique that identifies a set of animals whose genetic profile
is as close as possible to specified abundances of alleles (i.e., genetic variants), subject to constraints on the
number of founders and their genders and ages.

1. Introduction

It is generally agreed that techniques from genetics and genomics can be useful for understanding, and
ideally sometimes preventing, the process of extinction1,2,3. One facet of species-conservation efforts, when
appropriate, is to breed animals of an endangered species in captivity, e.g., in zoos and wildlife parks, with
the goal of releasing them back into the wild at some time in the future. In some cases, the number of
animals has dropped so low that all members of a species have been captured, as was done in North
America for the California condor, red wolf and black-footed ferret. A better approach may be to identify
species whose numbers are declining sharply but where more animals exist than can be supported in
captivity, and to select from among the wild animals a representative subset to serve as the founder
population for the captive breeding program.

In such cases, there is broad agreement among wildlife management officials that a goal should be for
the founder population to capture at least, say, 95% of the genetic diversity of the wild population.
However, there is disagreement over precisely what this means and how to achieve it. Perhaps the most
common reasoning goes as follows4. Suppose a genomic position has two alleles in the population, with
frequencies p and 1–p. A founder population consisting of a random sample of n animals has 2n instances
of that position, and the probability that all of them contain the first allele is p2n. Thus, the probability that
the n animals have at least one copy of each allele (rather than 2n copies of the same allele) is:

1 – p2n – (1–p)2n.

† Correspondence: webb@bx.psu.edu

Pacific Symposium on Biocomputing 15:43-53(2010)

If we want to obtain, with 95% certainty, both alleles at each random locus that occurs with a frequency of
at least 0.05 in the wild population, then 30 founders are adequate, as is shown by evaluating the formula
with p = 0.05 and n = 30. To have a 95% chance of capturing an allele with a frequency of only 1%
requires 150 founders; 30 founders will probably not contain it.

The deficiency in this reasoning is that alleles don’t occur at random in a wild population. Instead, a
given allele is likely to occur more frequently in one sub-population than another, e.g., because of
geographical barriers to gene flow. Thus, for example, picking all of the founders from one sub-population
can easily miss alleles that are common overall. In practice, without an accurate survey of the genetic
profile of the species, the number, degree of differentiation, and geographical locations of the relevant sub-
populations may not be known.

Modern methods for sequencing and genotyping make it possible to directly assess the genetic
diversity of a species and identify its population structure; sequencing a small sample of geographically
distinct individuals can identify a number of the available genetic variants, and genotyping methods can
then efficiently determine the genetic make-up of a large number of individuals population-wide. This
paper describes how the resulting data can be used to select an optimal subset of the genotyped individuals
that best matches specified allele frequencies, while satisfying additional constraints such as the total
number of individuals selected, the number of males, and a suitable distribution of ages. Also, we show that
allowing a bit of flexibility in the choice of founders can simplify the computation. In another formulation,
we know the average genetic characteristics in sub-populations of the species, but not the genotypes of the
individual candidates for the founder population.

One way to select the target genetic profile for the founder population is to match what is observed in
living animals. In that case, random sampling would be justified if there is no population-genetic structure
to the sampled population. Using the genotyping data required by our approach, one could run a program
like STRUCTURE5 to see if such structure exists.

The goal of recapitulating the distribution of alleles found in the overall population is by no means the
only approach. We believe that in some cases a preferable goal may be to restore the balance that existed
before the species was affected by the onslaught of industrial pollution, pesticides, disease, etc. in the last
century or two. (We assume here that the pollution has been cleaned up, since we wouldn’t want to undo
any progress the species has made in dealing with it.) To support this approach, we are developing
improved methods for sequencing the DNA from museum specimens6,7, which can be used to determine
past allele frequencies and population structure, and thereby identify a more natural target allele
distribution for a founder population.

Another option for the target profile is where all alleles have frequency 0.5. For each locus, this
minimizes the probability that an allele will be lost due to random genetic drift in the captive population.
(This observation can be rigorously proved by martingale theory.) Moreover, this choice maximizes the
genetic diversity in the captive population, since the probability that two randomly selected copies of a
locus with minor allele frequency p are different is 2p(1–p), which is maximized when p = 0.5.

2. Methods
2.1. The Data
In our approach, several individuals of the species (perhaps even just a single individual) are sequenced
using next-generation sequencing technology, until an adequate number of genomic differences has been
identified. This step is not as easy as it sounds, because we assume that at the start of this process we know
nothing about the genomic characteristics of the target species. In contrast, next-generation sequencing
instruments and the available software for analyzing the data they produce are primarily designed for re-
sequencing, i.e., where the goal is to look for small differences from an available “reference” genome
sequence. Often, and also in our case, the main quest is for single-nucleotide polymorphisms, abbreviated
SNPs. (Experts might cringe at this use of “SNP”, instead requiring that a nucleotide difference be
observed at a certain frequency, say ≥ 1%, before deserving the title of a polymorphism.) We call this
initial stage for our approach “identifying SNPs without a reference”. In more detail, the problem is to start
with a specification for the desired number of SNPs, and automatically process short fragments of
unannotated sequence data, identifying putative SNPs until enough have been found. We have developed
software to solve this problem, but that is not the focus of this report. The outcome of this stage is a list of

Pacific Symposium on Biocomputing 15:43-53(2010)

genomic positions, each identified by, say, the 50 nucleotides on each side, where we predict that two
distinct alleles are present in the population.

Once enough SNPs have been predicted, we design a custom genotyping array — a fabricated device
that uses hybridization of DNA samples to the sequences flanking the putative sequence difference to
determine which variant of each SNP is possessed by each assayed individual. For now, let us assume that
each animal has two copies (maternal and paternal) of that genomic position; they can be the same (in
which case we say the individual is homozygous for the SNP) or different (heterozygous). For each SNP,
arbitrarily pick one of the two variants as the “reference allele”, and suppose there are L variant nucleotide
positions and that K individuals have been genotyped. The outcome of the genotyping step is an array, A,
with L rows and K columns, whose value Aij at the intersection of row i and column j is the number of
copies (0-2) of the ith SNP’s reference allele that was observed in the jth individual. (Be warned that in other
contexts it may be common for the roles of rows and columns to be reversed.)

There are many ways to formulate the problem of using genotyping data to select an optimal founder
population for a captive-breeding program. We next describe a few of the possibilities.

2.2. Formulation 1: Approximating Specified Allele Frequencies using Mixed-Integer-Programming
Tools

Suppose that from a pool of K genotyped individuals we want to select N (a specified size of the founder
population) whose combined allele frequencies are as close as possible to a given ideal, e.g., the species’
allele frequencies in the year 1900 as estimated from museum specimens. Let L denote the number of SNP
positions, which we assume are biallelic (two variants), and for each SNP pick one allele arbitrarily for
reference. Denote the target frequency of the reference allele for SNP i (where 1 ≤ i ≤ L) by fi with 0 ≤ fi ≤
1. Thus, in the founder population of N animals, there ideally will be bi = 2Nfi occurrences of that allele.
Selecting a founder population is then equivalent to determining N binary variables xj∈{0,1} for 1 ≤ j ≤
K, where xj = 1 if the jth animal is in the founder population and xj = 0 otherwise. The requirement that there
be N founders can be stated as ∑xj = N. The number of occurrences of reference allele i in the founder
population is ∑{Ai,jxj : 1 ≤ j ≤ K}, which we want to be very close to the chosen target value bi.

We will typically want to place additional constraints on the set of selected individuals. For instance,
suppose we want to select exactly 50 individuals, of which 20 are males, and 10 are two years old. We form
a 3-by-K array, C, where first row is all 1s, the second row has a 1 in column j if the jth genotyped
individual is a male (0 for a female), and the third row has a 1 in positions corresponding to 2-year-olds (0
otherwise). Our constraints then have the form Cx = d, where d = (50, 20, 10)T.

Thus, our focus is on the following general formulation: We are given the L × K matrix A of allele
frequencies Ai,j, the vector b =(b1,b2,…,bL)T that indicates the desired total abundance of each reference
allele in the founder population, and the M × K matrix C and vector d =(d1,d2,…,dM)T that represent other
constraints on the population (such as total population size, number of individuals of each age, number of
each sex, and so on). We want to determine a vector x = (x1,…,xK)T of binary variables that indicate
whether individual j (j=1,2,…,K) is included in the selected population, such that the desired allele
abundances are matched as closely as possible subject to the specified constraints. Our problem
formulation is thus

Minimizex ρ(Ax–b) subject to Cx ≤ d, x∈{0,1}K,

where ρ(.) denotes a loss function that measures goodness of fit between two vectors of length L. (Although
the constraints are written as inequalities, our discussion generalizes immediately to the case in which some
or all are equality constraints.) The most useful goodness-of-fit measures ρ are the sum-of-squares
function, the l1 (sum-of-absolute-values) loss function, or the l∞ (maximum residual) loss function, leading
to the following three specific formulations:

Minimizex (1/2L)Σi
 (Ai. x–bi)2 subject to Cx ≤ d, x∈{0,1}K,

(where Ai. denotes the ith row of A);

Minimizex Σi=1,2,…,L
 |Ai. x-bi|/L subject to Cx ≤ d, x∈{0,1}K

Pacific Symposium on Biocomputing 15:43-53(2010)

and:

Minimizex maxi=1,2,…L |Ai. x-bi| subject to Cx ≤ d, x∈{0,1}K

 The objective in the least-squares formulation can be rewritten as (1/2) xTQx + cTx where Q =
(1/L)ATA and c = –(1/L)ATb, leading to a binary quadratic program. The l1 and l∞ formulations can be
formulated as mixed-integer linear programs (MIP) by using some standard reformulation techniques. For
the l1 formulation, we introduce variables ri and si to denote the positive and negative parts of Ai. x – bi,
respectively, and defining r =(r1,r2,…,rL) and s =(s1,s2,…,sL), we obtain the following reformulation:

Minimizex,r,s 1T(r +s) subject to r – s =Ax – b, Cx ≤ d, r ≥ 0, s ≥ 0, x∈{0,1}K,

where 1 denotes the vector of length L whose elements are all 1. In fact, this is a binary MIP, since the
solution contains a combination of continuous variables (r and s) and binary variables (x). For the l∞

formulation, we obtain:

Minimizex,η η subject to –η1 ≤ Ax – b≤η1, Cx ≤ d, x∈{0,1}K,

where η is a scalar that captures the largest magnitude among elements in the vector Ax – b.

Commercial packages for solving MIP include CPLEX (www.ilog.com) and Xpress
(www.dashoptimization.com), while CBC in the COIN-OR collection (https://projects.coin-or.org/Cbc) is a
good open-source alternative. Many packages (including CPLEX and Xpress) now include support for
integer quadratic programs as well as linear MIPs. Modeling languages are also available that interface to
these solvers and allow users to specify their problem in an intuitive fashion. These include AMPL
(www.ampl.com) and GAMS (www.gams.com). However, the problems in this paper have a simple
enough form that modeling languages are not necessary unless one wishes to use the NEOS Solver, a web
server for solving optimization problems at no cost (see www-neos.mcs.anl.gov).

MIPs are known to be extremely difficult to solve in general (they are NP-hard). However, for many
practical problems, good solutions can be obtained in a reasonable amount of computing time. The
algorithms underlying MIP codes are based on branch-and-bound strategies, cutting planes, and various
other heuristics. When applied to the binary MIP above, branch-and-bound strategies construct a tree of
relaxed problems, where in each node of the tree some of the binary variables xj are fixed at 0 or 1 while the
others are allowed to take on any value in the range [0,1]. This “relaxation” is a (continuous) linear
program whose optimal value yields a lower bound on the optimal value of the original MIP. At each node
of the tree, we form two child nodes by choosing one of the relaxed variables xj and fixing it to 0 and 1,
respectively. Note that the lower bound achieved at each child node must be at least as great as the lower
bound at the current node. (At the root node of the tree, we relax all the variables and impose only the
bounds xj∈[0,1], j=1,2,…,K, along with the constraints Cx ≤ d.) The full tree would have 2K nodes in total,
but the hope is that we can avoid examining the vast majority of the tree by cutting off branches on which
the lower bound is already greater than the value obtained at the “incumbent” – the feasible point with the
best known objective value obtained to date.

Cutting planes are additional linear constraints added to the relaxed problem whose function is to
exclude fractional solutions – those in which some components xj are not either 0 or 1. Cuts can also be
applied at lower nodes in the branch-and-bound tree. MIP software typically contains many heuristics for
deciding on branching strategy (i.e. choosing the relaxed variable xj on which to branch at each node),
deciding what kinds of cutting planes to find and how often to look for them, and looking for candidate
feasible solutions to use as incumbents. By setting options at input, users can control all these aspects of the
codes.

The problems arising in this application have a property that makes them quite difficult to solve with
standard MIP strategies. Because of the nature of the problem data, relaxation of the binary variables leads
to a relaxed solution that has most of its components in the interior of the interval [0,1]. (This is true at
most of the nodes of the branch-and-bound tree as well as at the root node.) Hence, the relaxed solutions
are far from being feasible points for the original problem, and they produce only a weak lower bound on

Pacific Symposium on Biocomputing 15:43-53(2010)

the true objective. The upshot is that the branch-and-bound strategy is not able to exclude large parts of the
tree from the search, and many nodes must be visited (and the relaxed problem at those nodes solved)
before the lower bound increases to the point where a candidate solution can be declared to be nearly
optimal. (This effect has also been observed in related contexts by D. Bienstock, in a personal
communication.) It is likely that the heuristics for finding good candidate solutions in these codes do in fact
generate near-optimal solutions after a fairly short time; the difficulty comes in verifying that indeed it is
close to the best attainable. Generation of better lower bounds remains an open research question in
computational mixed-integer linear programming.

When we use the mixed-integer quadratic programming formulation arising from the sum-of-squares
loss function (see below), the same issue arises. However, in this case, in an unpublished manuscript dated
2009, D. Bienstock proposes to use lower bounds on the curvature of the quadratic objective to improve the
quality of the lower bounds obtained at the nodes of the branch-and-bound tree. In our case, the matrix A
(and Q = ATA) typically is well conditioned, so the bounds obtained by these means may be significantly
stronger than the standard lower bound. We note that software frameworks for mixed-integer quadratic and
nonlinear programs are much less prevalent than for linear MIPs, and this fact together with the large
values of K and L for some data sets makes the logistics of developing a code for solving this problem quite
daunting.

2.3. Formulation 3: A Pure Integer-Programming Variation

We have also explored simpler optimization problems related to selecting a set of individuals that satisfy
requirements on their genotypes and other constraints. The hope is that the problem can be solved more
efficiently than the problems discussed in the previous section, and that at least in some instances the
solution will be adequate for the needs at hand.

For instance, formulating the computation as a linear programming problem whose only unknowns are
the K binary variables xj widens the domain of solvers that can be applied. One approach is as follows. Let
A, b, C and d be as in Formulation 1. There, A and b have L rows and contribute to the objective function,
while C and d have M rows and constitute the constraints. Let us assume that the constraints require that
either Ck. x = dk or Ck. x ≥ dk for 1 ≤ k ≤ M (where Ck. denotes the kth row of C). Form the (2L+M–1) × K
array A2 and vector b2 as follows. For every row of A, corresponding to the reference allele for a particular
SNP, A2 contains that row plus a row for the other allele of that SNP. Thus the sum of the two rows has a 2
in every position. The corresponding two entries in b2 are the SNP’s entry in b (giving the target abundance
for the reference allele) and 2N minus that value. The other rows of A2 and b2 are taken from C and d,
omitting the constraint that the founder-population size is N. The pure integer-programming approximation
to Formulation 1 is:

Minimize ∑xj subject to A2x ≥ b2, x∈{0,1}K

This reformulation makes the following changes. First, the size of the founder population is now

variable. For instance, if each of 5 age groups is required to have 10 representatives among the founders, it
might require 55 founders to also satisfy the other constraints. Also, where we formerly required the
abundance of the reference allele for the ith SNP to approximate bi (and by inference the abundance of the
SNP’s other allele to approximate 2N–bi), we now require the two alleles’ abundances to equal or exceed
those values. Finally, equality constraints in Formulation 1 are relaxed to inequalities. For instance, an
original requirement of exactly 20 males now requires at least 20 males. Compared to the l1 version of
Formulation 1, this gives a problem with many fewer unknowns (but the same number of binary
unknowns), though there are far more constraints. In this respect it is similar to the l∞ version of
Formulation 1.

An advantage of looking at the problem this way is that several approaches for cutting corners are
suggested. First, it may be possible in practice to simply discard most of the constraints. For instance, if the
only concern is to retain rare alleles, then constraints where the required allele frequency exceeds an
appropriate lower bound could be removed. Another strategy is to replace the function being optimized (the
number of founders) by a constraint that the founder population be “small enough”. For instance, if we
want to require that there be at least 10 individuals in each of five age groups (requiring 50 founders), we
can add the constraint ∑xj ≤ 55. Strategies like these can substantially expand the range of problem that are
readily solved, as illustrated in Section 3.3, below.

Pacific Symposium on Biocomputing 15:43-53(2010)

2.4. Formulation 4: Selecting Animals That Aren’t Genotyped

Another variant is to again fix the number of animals to be chosen, say N, and optimally select from
the already genotyped pool and/or ungenotyped wild individuals. For ungenotyped animals, we assume that
the genetic profiles of animals from different populations or geographic regions are already characterized
from the genotyping. The point is not that individuals who are not genotyped are being selected. Rather, the
issue is that representative individuals are being sampled from populations whose general properties are
assumed to be known, even if the specific individuals are unknown.

Suppose we have L SNPs characterized for K populations (or geographic locations). Fix a “reference”
allele for each SNP (say, the more-common allele), and let pi,j denote that allele’s frequency for SNP i in
population j, where 1 ≤ i ≤ L and 1 ≤ j ≤ K. We assume that pi,j is known. If we want to sample xj animals
from population j, an optimal sampling strategy that yields the desired genetic diversity can be determined
by the following criteria:

• The expected abundance of the reference allele for the ith SNP closely approximates the target value bi.
• If population j has cj individuals, then 0 ≤ xj ≤ cj.
• The total sample size is N.

Let P = {pi,j} denote the L × K matrix of allele frequencies, pi denote the ith row of P, and b =
(b1,b2,…,bL)T. Also let x = (x1, · · · , xK)T denote the vector of unknown animal-counts from the various sub-
populations. For SNP i, the expected count for the reference allele is 2pix. Thus, the above criteria can be
expressed as:

Minimizex ρ(Px–b) subject to 0 ≤ xj ≤ cj and xj an integer for 1 ≤ j ≤ K and ∑xj = N.

Here ρ can be any of the loss functions mentioned above. To include both selection (from genotyped
animals) and sampling (from the wild), we can treat each genotyped animal as a “one-individual
population”, for which pi,j equals 0 (homozygote wild type), 0.5 (heterozygote) or 1 (homozygote
mutation), and cj = 1. In cases where the sub-population sizes cj are fairly large, the restriction to integer
solutions might not be so onerous as the constraint to binary unknowns in Formulation 2; rounding the
entries of a solution to the continuous-variable problem might be good enough in practice. That is, the
problem is solved by allowing each variable xj to assume arbitrary real values between 0 and cj, and then
the optimal value replaced by the closest integer.

3. Experience

In essence, the genotyping data considered in this paper consists of a matrix with L rows and K columns,
where each row corresponds to a genomic position where different nucleotides have been observed within a
species, and each column corresponds to an individual animal of that species. Each entry is 0, 1, or 2,
depending how many copies of the (arbitrarily chosen) reference allele for that difference are present in that
individual. (For now, we are considering autosomal nucleotide polymorphisms, but in Section 3.4 we
sketch what needs to be changed for other kinds of genomic polymorphisms, such as microsatellites.) Small
numbers of these so-called SNPs (single nucleotide polymorphisms) have been used for various purposes
related to wildlife management8, but we anticipate the day, not long off, when next-generation sequencing
and large-scale genotyping methods will be employed. In particular, our goal here is to use such data to
select a set of animals with optimal genetic diversity that meets certain additional constraints, and we have
described combinatorial optimization methods for several formulations. We now recount our experience to
date with applying some of those methods to realistic (though mostly artificial) sets of data.

3.1. Test Data

Large genotype data sets will soon be available for endangered species, including the orangutan (personal
communication from C. Bustamante and D. Locke). Currently, data for 384 SNPs and 322 individuals is
available for a bird, the collard flycatcher9. Much larger data sets are available for some domesticated
species. For instance, for cattle there is data for 37,470 SNPs and 497 individuals10. However, the most

Pacific Symposium on Biocomputing 15:43-53(2010)

extensive data sets are for humans, and we have employed these data to begin evaluating our proposed
methods.

We used human genotypes from a preliminary data release from the 1000 Genomes Project11,12, which
we downloaded from ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/2009_04/. We identified over 4
million SNPs having data from each of the population groups CEU, JPTCHB, and YRI, which yielded
complete data for 172 individuals. To experiment with various solution techniques we created data sets by
randomly selecting L rows and K columns from the derived array of genotypes, for various values of L and
for K ≤ 172. In our tests, and we anticipate also in practice, L (the number of SNPs) is typically larger than
K (the number of genotyped animals). When genders and ages of the individuals were needed, we
randomly assigned genders and age groups 1 to 5 with equal probabilities. When a vector of target allele
frequencies was needed, we scaled the observed frequencies in the selected genotypes to the desired size of
the founder population. That is, for each row (SNP), we summed the numbers (0-2) in that row, multiplied
by the size of the founder population, and divided by the number of columns (genotyped individuals).

3.2. Results Obtained with Mixed Integer Programming Formulations

For the problem of fitting a desired distribution of allele frequencies, we first wanted to see how well one
can do using freely available software, without any attempt to tune the software’s behavior to the
particularities of our data, and making only modest use of computational resources. To do this, we
attempted to solve instances of the l1 version of Formulation 1 using a MIP solver called CBC run at the
NEOS13 server (without an “Options File” to adjust CBC’s behavior). For each of several combinations of
L and K, we requested a founder population with 20 males and 10 animals of each age (1 to 5), for a total of
50 founders. For 200 SNPs and 100 animals, the problem was solved to optimality in just over 3 minutes.
When the number of SNPs was raised from 200 to 300, the time needed to find an optimal solution shot up
to almost an hour. For 500 SNPs and 100 animals, or 300 SNPs and 172 animals, the computation exceeded
our 5000-second time limit, producing a solution that is probably reasonable, but quite possibly not
optimality.

We next report on results obtained with the commercial MIP solver CPLEX on the l1 and l∞

formulations, using a data set with 5000 SNPs and 172 individuals. Again, it was required to select 10
individuals of each age 1 through 5, of whom 20 would be males, for a total of six constraints. The
objective was to make the frequency of alleles in the selected population as close as possible to the
frequency in the overall population, in the l1 or l∞ sense. The modeling language GAMS14 (www.gams.com)
was used to define the model. (Direct use of GAMS models has the advantages that they allow variants of
the models to be tried quickly, and that GAMS files can be submitted to the NEOS server.)

CPLEX, like other MIP solvers, allows many options and parameters to be set to non-default values, to
improve their efficiency. Insight into the nature of problems being solved, and some trial-and-error and
parameter tuning, can lead to dramatic improvements in run time over default values. For these problems,
however, we able to obtain only modest improvements over default behavior by choosing alternative values
of these parameters. Techniques that can handle the special characteristics of these problems (noted above)
and produce verified optimal solutions in a reasonable amount of time are not available in current MIP
solvers and are a topic of ongoing research. We believe, however, that the code is finding close-to-optimal
solutions in reasonable time. As noted above, the difficulty comes only in verifying that they are indeed
near-optimal, as we need to examine a large fraction of the nodes on the search tree to increase the lower
bound to a level close to the best feasible solution obtained so far.
 We mention for the record that the following non-default parameter values were used in the CPLEX
runs reported here: cliques=–1 and covers=–1 (to turn off certain kinds of cut generation), dpriind=3 (to use
steepest-edge pricing in slack space of the simplex method used at each node), varsel=4 (to force the use of
pseudo-reduced costs as a criterion for branching), symmetry=5 (to generate symmetry-breaking cuts
aggressively during the early stages of the solution process), mipemphasis=4 (to emphasize the search for
better candidate solutions rather than improvement of the lower bound). We make no claims that this
combination gives the best performance overall, or even that it is better than the default settings on these
problems. CPLEX Version 11.2 was executed on both formulations for 15,000 CPU seconds (a limit
prescribed by us) on a PC with an Intel Xeon quadcore CPU at 2.66 GHz, running Red Hat Enterprise
Linux Server release 5.3, with 4GB of DDR2 memory at 800 MHz.
 For the l∞ formulation, the code found a point with objective value 9.9770, with a lower bound of
1.3901, within a few hundred seconds of CPU time. The candidate solution was found by running default

Pacific Symposium on Biocomputing 15:43-53(2010)

heuristics and adding cuts to the relaxed problem at the root node of the search tree. During the remainder
of the 15,000 seconds of execution time, 1460 nodes of the search tree were examined and four
progressively better candidate solutions were found. At termination, the best solution found had objective
9.4070, while the lower bound had increased only to 1.8060.
 For the l1 formulation, the code quickly identified a candidate solution with objective 2.2173, with a
lower bound of .3931, again without performing any branching. During the remainder of the execution
time, three more candidate solutions with progressively better objective values were identified, with the
final solution having objective 2.2150, while the lower bound had increased to 0.4717. Only 201 nodes of
the branch-and-bound search tree were evaluated.
 We note that the solutions obtained with these two objectives were quite different. In fact, of the 50
individuals in each solution, only 19 were selected in both.
 We conclude by reporting results obtained with the binary quadratic programming formulation. Note
that the only variables in this formulation are the original 172 binary variables. (By forming the Hessian
matrix Q and linear term c explicitly, we avoid the need to introduce any additional continuous variables.)
We found that the results were improved slightly when we performed a simple transformation of A and b,
before forming Q and c. Since a total of 50 animals are to be selected (that is, 50 of the components of x are
1 at the optimum, while the remainder are zero), we can subtract 1 from all elements of A, while
subtracting 50 from each element of b. After this transformation, A contains elements –1, 0, and +1, and
Q=(1/L)ATA can have slightly better conditioning. We use this shifting procedure for the experiment
reported below.

For this formulation, we wrote a C code to set up the problem and call CPLEX. Except for the
termination criteria (which enforced a limit of 15,000 seconds on CPU time), default parameter settings for
CPLEX’s MIQP solver were used. Within a few seconds, the code finds an incumbent (the best feasible
point encountered to date) with objective 3.9701. A total of 22 incumbents are found during the run. The
last of these (which is the solution reported by the code) has an objective of 3.8113. After about a minute,
the lower bound is approximately 1.71; it increases steadily but slowly thereafter to a final value of 1.8878.
About 13,500,000 nodes of the branch-and-bound tree are examined during the run. CPLEX’s mixed-
integer QP solver makes much less use of cuts, and thus places much more reliance on branching as a
means of solving the problem.

To compare the optimization methodology with a random strategy as a means for selecting a set of
individuals that fits the target allele frequencies while satisfying the constraints, we programmed in
MATLAB a code that generates 3414 feasible points for this test set at random. The mean of the objective
values obtained from this process is 6.2729, with a standard deviation of 1.1798. The best objective found
was 4.8353, which is significantly worse than the solution obtained by the optimization code after just a
few seconds of run time.

3.3. The Pure Integer-Programming Variation

For a given set of genotyping data, finding a “sweet spot” for the many combinations of potential LP
shortcuts, available solvers, and choices of solver options will require some effort. As might be expected of
a computational problem with exponential time complexity, seemingly minor changes in the approach often
mean the difference between a quick solution and failure of the computation to terminate in a reasonable
time. However, we now report one simple experiment that hints at what can be achieved.

In Section 3.2 we noted failure of a straightforward attempt to run a NEOS MIP solver on random data
for 300 SNPs and 172 animals. To experiment with reformulations of the problem, we generated random
data for 2000 SNPs and 172 animals and applied the following shortcuts to the approach outlined in Section
2.3. First, we permitted up to 55 founders (while continuing to require at least 10 in each of the five age
groups). Second, we retained constraints on the allele abundance only when the lower bound was 5 or less,
leaving 146 of the original 4000 allele-abundance constraints. Using C-language programs that we wrote to
convert genotyping data to MPS format, we submitted the data to the SCIP15 optimizer at the NEOS server
(with no “Parameter file”). In around 30 seconds, SCIP found a feasible solution containing 55 founders.
We discovered that 16 of the original alleles whose constraints had been removed had less than 5
occurrences in the computed founder-set. All of those had at least 3 occurrences, which might be
considered adequate under certain conditions. An alternative is to add the requirement that each of those 16
alleles occur at least 5 times to the 146 allele-abundance constraints, and re-solve the problem.

Pacific Symposium on Biocomputing 15:43-53(2010)

We also experimented with an even simpler integer-programming formulation, using a real-world data
set. The objective was simply to guarantee a minimum number of occurrences of each allele, using
genotyping data from a 96-SNP array that we designed for the Tasmanian devil (Sarcophilus harrisii), a
species that is gravely threatened by extinction from a transmissible tumor16. We used the array to genotype
85 animals, and for the following analysis used the 69 SNPs that appeared in more than one animal. The
problem we investigated was to select a set of animals that contains each allele at least twice, which
corresponds to a binary linear programming problem of minimizing Σxj subject to Ax ≥ 2, x∈{0,1}K, where
2 denotes the vector containing 2s. For our 69-by-85 array, A, linear programming selected four animals.
Interestingly, a simple greedy algorithm17 that repeatedly picks the animal that adds the most “uncovered”
alleles, selected six animals. With four randomly selected animals, an average of only 22.7 of the 69 alleles
appeared at least twice. Looked at another way, random selection picked an average of 31.9 animals before
reaching 2-fold representation of every allele. What makes the problem difficult for random sampling is
that a few of the alleles appeared only a few times among the 85 animals. (Extensive comparisons of the
greedy and random selection strategies for a very similar problem have been published by others18.)

3.4. Handling Other Types of Polymorphisms

Our approach has been described under the assumption that each genetic marker has two possible states,
and that each individual has two copies. Minor adjustments are required for other cases, such as
microsatellites with multiple states, or sex-chromosome or mitochondrial markers where an individual may
have fewer than two copies. For instance, for a microsatellite with three observed lengths, we could devote
three rows of the genotypes array, one for each length. For each column (individual) the values in those
rows will each be 0, 1, or 2, and the sum of the three values will be 2 (except perhaps for microsatellites on
a sex chromosome). This works for both the linear-programming and the quadratic-programming
formulations.

4. Conclusion
We have developed and evaluated several methods that can use high-throughput genotyping data to select a
set of animals that best approximates a specified allele profile, subject to additional constraints; the selected
animals might be used as founders for a captive breeding program or reintroduced into a former range for
that species, for example. We anticipate that the costs of sequencing and genotyping will continue to
plummet, making it feasible to gather genome-wide population-genetic data from hundreds of animals from
each of many species. One can easily imagine having genotypes for many thousand SNPs in hundreds of
individuals from an endangered species, and using that information to select founders. The number of SNPs
required to reliably represent genome-wide variation is liable to depend heavily on the particular species
(not to mention how one interprets “reliably represent”). For humans it has been estimated19 that, among
all of the 6 million common (minor-allele frequency ≥ 0.1) European SNPs in the human genome, about
80% could be ascertained at ρ2 > 0.8 through pairwise linkage disequilibrium (LD) by genotyping 0.8
million European common and non-redundant variants in the database dbSNP. To cover a similar
percentage of common SNPs in African-Americans, the number increases to 1.1 million SNPs. For a highly
bottlenecked species with more extensive LD, the required number of SNPs could be much less.

In any case, even with the available technologies, affordable approaches are possible. For a few tens of
thousands of dollars it is possible to sequence transcripts (cDNA) from several individuals, from which
polymorphic amino-acid positions can be identified. If the number of those differences exceeds the desired
array capacity, computational analysis could reduce them to the differences that show signs of being
functionally important20. For an additional few tens of thousands of dollars, a custom genotyping array can
be purchased and applied to genotype those differences on several hundred animals. Techniques described
in this paper, such as the mixed-integer-programming technique, can then perform an optimal, or at least
near-optimal, selection of founders, in the sense of capturing desired abundances of the putatively
functional protein variants.

Departure of the target allele distribution from the distribution in the overall population increases the
value of using an approach like ours, compared to simple random selection. For instance, we might want to
avoid hybridized alleles (e.g., cattle genes in American bison). More generally, the belief that the goal of
conservation efforts is to restore ecosystems to their “natural state”, which to some writers means their state
before any human intervention, has been widely discussed21. Several publications22,23 have used museum

Pacific Symposium on Biocomputing 15:43-53(2010)

specimens to determine earlier genetic profiles. However, this has typically been done using only tiny
amounts of hyper-variable sequence data, such as 500 bp from the mitochondrial control region or a small
number of microsatellites. Another scenario with differing allele profiles might be importing animals to
bring a struggling population up to a viable size when we want to retain its unique genetic make-up and/or
reduce the threat of outbreeding depression.

Other decisions related to species conservation have been approached with computational methods.
One such problem is selecting a set of species to be preserved. The problem has been formalized as
optimally selecting a specified number of species, given a phylogenetic tree relating a more inclusive set of
species and with branch lengths that measure inter-species differences. A natural objective is to maximize
the sum of branch lengths in the induced subtree24. A simple greedy algorithm guarantees an optimal
solution25, and dynamic-programming algorithms solve several generalizations26.27.

A set of individuals within a species is less well represented by a weighted tree, and other ideas have
been applied to selecting intervals, with “maximum diversity” a frequent goal. For instance, given a set of
genetic markers (SNPs, microsatellites, allozymes, etc.) one could try to maximize the number of observed
alleles represented in the selected set of individuals28. This is essentially just the infamous Minimum Set
Cover problem29, which is NP-complete and hence solved in biodiversity practice17 and studied in
computer science theory30 using approximation methods (including linear programming). The problem
studied here, with the added complexity of an arbitrary target distribution and constraints on gender and
age, is correspondingly more challenging.

A somewhat different class of optimization problems arises for management of a captive breeding
program, where in addition to genotypes one has access to genealogies. As with selection of founders, there
is tension between the potential goals of maximizing diversity and maintaining allele frequencies31.
Combinatorial optimization methods have been proposed for designing breeding programs32,33.

To keep pace with plummeting costs for sequencing and genotyping, more work is needed to extend

the computational approaches described in this paper. Cutting-edge research in optimization algorithms that
exploits the particular characteristics of this family of optimization problems may be needed to best utilize
cutting-edge data-producing technologies.

Acknowledgments
We thank Belinda Giardine for preparing the 1000-Genomes data set. Oleg Shylo and the reviewers
provided a number of helpful suggestions. W.M. and Y.Z. are supported by grant HG-002238 from the
National Human Genome Research Institute. S.J.W. has support from NSF grants DMS-0427689, CCF-
0430504, DMS-0914524, and DOE grant DE-FG02-04ER25627. S.C.S. is supported by the Gordon and
Betty Moore Foundatation, and V.M.H. is a Cancer Institute of New South Wales Fellow.

References

1. R. Frankham, J. D. Ballou and D. A. Briscoe, Introduction to Conservation Genetics, Cambridge

University Press (2002).
2. J. Höglund, Evolutionary Conservation Genetics, Oxford University Press (2009).
3. G. Bertorelle, M.W. Bruford, H. C. Hauffe, A. Rizzoli and C. Vernise, Population Genetics for Animal

Conservation, Oxford University Press (2009).
4. D. R. Marshall and A. D. H. Brown, in Crop Genetics Resources for Today and Tomorrow (O. H.

Frankel and J. G. Hawkes, eds.), Cambridge University Press, 53-80 (1975).
5. J. K. Pritchard, M. Stephens and P. Donnelly, Genetics 155, 945-959 (2000).
6. W. Miller, D. I. Drautz, A. Ratan, et al., Nature 456, 387-390 (2008).
7. W. Miller, D. I. Drautz, J. Janecka. et al., Genome Research 19, 213-220 (2009).
8. J. Slate, J.Gratten, D. Beraldi, et al., Genetica 136, 97-107 (2009).
9. N. Backström, N. Karaiskou, E. H. Leder et al., Genetics 179, 1479-1495 (2008).
10. The Bovine HapMap Consortium, Science 324, 528-532 (2009).
11. B. M. Kuehn, JAMA 300, 2715 (2008).
12. N. Siva, Nat. Biotech. 26, 256 (2008).
13. J. Czyzyk, M. Mesnier and J. J. Moré, IEEE Comp. Sci. Eng. 5, 68-75 (1998).
14. A. Brooke, D. Kendrick and A. Meeraus, GAMS: A User’s Guide, The Scientific Press (1988).

Pacific Symposium on Biocomputing 15:43-53(2010)

15. T. Achterberg, Constraint Integer Programming, Ph. D. dissertation, TU Berlin (2007). Available at
http://scip.zib.de/documentation.shtml.

16. H. V. Siddle, A. Kreiss, M. D. Eldridge et al., Proc. Natl. Acad. Sci. USA 104, 16221‐16226 (2007).
17. B. Gouesnard, T. M. Bataillon, G. Decoux et al., J. Hered. 92, 93-94 (2001).
18. H. I. McKhann, C. Camilleri, A. Bérard, et al., Plant J. 38, 193‐202 (2004).
19. C. S. Carlson, M. A. Eberly, M. J. Rieder et al., Nat. Genet. 33, 518-521 (2003).
20. P. Ng, S. Levy, J. Huang et al., PLoS Genetics 4, e1000160. doi:10.1371/journal.pgen.1000160 (2008).
21. P. I. Angermeier, Conserv. Biol.14, 373-381 (2000).
22. H. C. Rosenbaum, M. G. Egan, P. J. Clapham et al., Conserv. Biol. 14, 1837-1842 (2000).
23. A. Koblmüller, M. Nord, R. K. Wayne and J. A. Leonard, Mol. Ecol. 18, 2313-2326 (2009).
24. D. P. Faith, Biol. Conserv. 61, 1-10 (1992).
25. M. Steel, Syst. Biol. 54, 527-529 (2005).
26. F. Pardi and N. Goldman, Syst. Biol. 56, 431-444 (2007).
27. B. Q. Minh, F. Pardi, S. Klaere and A. von Haeseler, IEEE/ACM Trans.Comp, Biol. Bioinf. 6, 22-29

(2009).
28. D. J. Schoen and A. H. D. Brown, Proc. Natl. Acad. Sci. USA 90, 10623-10627 (1993).
29. R. Karp, Complexity of Computer Computations (R. E. Miller and J. W. Thatcher, eds), Plenum Press,

85‐103 (1972).
30. D. Hochbaum, Approximation Algorithms for NP­Hard Problems. PWS Publishing, Boston (1996).
31. M. Saura, A. Pérez‐Figueroa, J. Fernándes et al., Conserv. Biol. 22, 1277‐1287 (2008).
32. J. Vales‐Alonso, J. Fernándes, F. J. Gonzáles‐Castaño and A. Caballero, Math. Biosci 183, 161‐173

(2003).
33. T. Y. Berger‐Wolf, C. Moore and J. Saia, J. Theor. Biol. 244, 433‐439 (2007).

Pacific Symposium on Biocomputing 15:43-53(2010)

